1 Star 0 Fork 0

Gitee 极速下载 / cupdlp-c

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/COPT-Public/cuPDLP-C.git
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MIT

cuPDLP-C

cuPDLP is now available in COPT 7.1!

Code for solving LP on GPU using the first-order algorithm -- PDLP.

This is the C implementation of the Julia version cuPDLP.jl.

Compile

We use CMAKE to build CUPDLP. The current version switches to HiGHS project (previously, Coin-OR CLP).

Please compile with HiGHS 1.6.0 and CUDA 12.3.

Note that if you install HiGHS using the precompiled binaries, the compressed MPS files cannot be read. You can build and install with the zlib support from source, see this page to find out more. Once you setup HiGHS and CUDA, set the following environment variables.

export HIGHS_HOME=/path-to-highs
export CUDA_HOME=/path-to-cuda

By setting -DBUILD_CUDA=ON (by default OFF, i.e., the CPU version), you have the GPU version of cuPDLP-C.

Examples

  • use the debug mode:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_CUDA=ON ..
cmake --build . --target plc

then you can find the binary plc in the folder <cuPDLP-C>/build/bin/.

  • when using the release mode, we suggest the following options,
cmake -DBUILD_CUDA=ON \
-DCMAKE_C_FLAGS_RELEASE="-O2 -DNDEBUG" \
-DCMAKE_CXX_FLAGS_RELEASE="-O2 -DNDEBUG" \
-DCMAKE_CUDA_FLAGS_RELEASE="-O2 -DNDEBUG" ..

Alternative Interfaces

The Python Interface

If you wish to use the Python interface, use the following steps:

git submodule update --init --recursive

then build the target pycupdlp

cmake --build . --target pycupdlp 

(Optional) You may checkout the setup scripts under pycupdlp.

Usage

Usage example: set nIterLim to 5000 and solve.

./bin/plc -fname <mpsfile> -nIterLim 5000

For the helper: use -h.

./bin/plc -h

or

./bin/plc <something> -h <something>
Param Type Range Default Description
fname str .mps file of the LP instance
out str ./solution-sum.json .json file to save result
outSol str ./solution.json .json file to save result
savesol bool true, false false whether to write solution to .json output
ifScaling bool true, false true Whether to use scaling
ifRuizScaling bool true, false true Whether to use Ruiz scaling (10 times)
ifL2Scaling bool true, false false Whether to use L2 scaling
ifPcScaling bool true, false true Whether to use Pock-Chambolle scaling
nIterLim int >=0 INT_MAX Maximum iteration number
eLineSearchMethod int 0, 2 2 Choose line search: 0-fixed, 1-Malitsky, 2-Adaptive
dPrimalTol double >=0 1e-4 Primal feasibility tolerance for termination
dDualTol double >=0 1e-4 Dual feasibility tolerance for termination
dGapTol double >=0 1e-4 Duality gap tolerance for termination
dTimeLim double >=0 3600 Time limit (in seconds)
eRestartMethod int 0-1 1 Choose restart: 0-none, 1-KKTversion
dFeasTol double >=0 1e-8 Tolerance for primal and dual infeasibility check

The PDLP Algorithm

Consider the generic linear programming problem:

$$ \begin{aligned} \min\\ & c^\top x \\ \text{s.t.}\\ & A x = b \\ & Gx \geq h \\ & l \leq x \leq u \end{aligned} $$

Equivalently, we solve the following saddle-point problem,

$$ \max_{y_1,\text{free}, y_2\geq 0}\min_{l\leq x\leq u}c^\top x - y^\top Kx + q^\top y $$

where dual variables $y^\top=(y_1^\top, y_2^\top)$, $K^\top = (A^\top, G^\top)$, $q^\top=(b^\top, h^\top)$.

Primal-Dual Hybrid Gradient (PDHG) algorithm takes the step as follows,

$$ \begin{aligned} x^{k+1} &= \Pi_{l\leq x\leq u} (x^k - \tau (c - K^\top y^k)) \\ y^{k+1} &= \Pi_{y_2\geq 0} (y^k + \sigma (q - K(2x^{k+1} - x^k))) \end{aligned} $$

The termination criteria contain the primal feasibility, dual feasibility, and duality gap.

$$ \begin{aligned} \left\\| \begin{matrix} Ax-b \\\\ (h - Gx)^+ \end{matrix} \right\\| &\leq \epsilon (1 + \\|q\\|) \\ \\|c - K^\top y - \lambda\\|&\leq \epsilon(1 + \\|c\\|) \\ |q^\top y + l^\top \lambda^+ - u^\top \lambda^- - c^\top x| &\leq \epsilon(1 + |c^\top x| + |q^\top y + l^\top \lambda^+ - u^\top \lambda^-|) \end{aligned} $$

where $\lambda = \Pi_\Lambda(c - K^\top y)$

$$ \lambda_i \begin{cases} = 0 & l_i=-\infty, u_i=+\infty\\ \leq 0 & l_i=-\infty, u_i<+\infty\\ \geq 0 & l_i<-\infty, u_i=+\infty\\ \text{free} & l_i>-\infty, u_i<+\infty \end{cases}.$$

$\\|\cdot\\|$ is 2-norm, and $|\cdot|$ is absolute value.

Authors

Dongdong Ge, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, Haihao Lu, Jinwen Yang, Yinyu Ye, Chuwen Zhang

Contact

  • Jinsong Liu <github.com/JinsongLiu6>
  • Tianhao Liu <github.com/SkyLiu0>
  • Chuwen Zhang <github.com/bzhangcw>
MIT License Copyright (c) 2023 COPT-Public Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

简介

cuPDLP 求解软件,可使用GPU实现线性规划问题求解,在求解超大规模线性规划问题上有显著优势 展开 收起
C/C++ 等 5 种语言
MIT
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
C/C++
1
https://gitee.com/mirrors/cupdlp-c.git
git@gitee.com:mirrors/cupdlp-c.git
mirrors
cupdlp-c
cupdlp-c
main

搜索帮助